
Assert

When a programmer writes an assert statement he's saying:
 “This condition must be true or we have an error!”
For example:

#include <assert.h>
#define MAX_INTS 100
int main() {

int ints[MAX_INTS];
// i should be in bounds, but is it really?
i = foo(<something complicated>);
// safety assertions
assert(i>=0);
assert(i<MAX_INTS);
ints[i] = 0;
return 0;

}

However if we’ll add the line “#define NDEBUG” just before “#include
<assert.h>, the two asserts will be translated into nothing by the
preprocessor and the program will run without the overhead of the bounds
checking.

Using assert

assert is a simple yet powerful tool for debugging. A few seconds putting in
assert statements can save you hours of debugging. In the final release you
get rid of the overhead of the checking by simply defining NDEBUG.
A common error in using asserts is to put expressions in assert tests which
need to be evaluated for the proper functioning of the program:

// bad, foo() will not be called the
// if compiler removes the assert() 
// if NDEBUG is defined
assert(foo() == 0);

// better
int errCode = foo();
assert(errCode == 0);

// much better (possible only if you have the
// source code of foo())

foo(); // The code in foo() does assert instead of
 // returning an error code for a bug

Notice: assert is not meant as a tool to check user input. assert should also
not be used as a way to check error code from functions such as malloc
which may fail because of shortage in resources (it’s not a bug). assert
should only be used for catching bugs.

